

The Virtual Liver Project

International Science Forum on Computational Toxicology Imran Shah (<u>shah.imran@epa.go</u>v) National Center for Computational Toxicology, EPA

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

Multidisciplinary Cross-ORD Team

Hugh Barton
Jerry Blancato
Rory Conolly
David Dix
Keith Houck
Elaine Hubal
Richard Judson
Robert Kavlock
David Reif
Woody Setzer
Imran Shah
John Wambaugh

Miles Okino

Daniel Chang

NCCT
NHEERL
NCEA

Chris Corton
Mike DeVito
Stephen Edwards
Hisham El-Masri
Nicholas Luke
Julian Preston
Doug Wolf

Rob Dewoskin Paul Schlosser

Growing ...

Outline

- 1. Risk assessment challenges
- 2. Virtual Liver Concept
- 3. Development approach
- 4. Initial steps

Assessing Risk of Environmental Chemicals

Risk assessment needs:

- What is the dose of chemical inside body at a given site?
- How is the chemical metabolized and disposed?
- Where in the body does the chemical cause injury?
- How does the injury depend on dose of the chemical?

Risk Assessment Challenges

- Injury is generally measured in laboratory animals
- Animal data is extrapolated to predict human dose and injury
- Extrapolation issues:
 - –Limited mechanistic knowledge
 - Effect of species on parameters
 - -Absence of low dose data
- Liver is a major target organ for toxicity of chemicals

Liver Function: multiple levels of biological organization & scales

Molecules 10⁻⁹m

Biological systems respond to perturbation with homeostatic responses ...

When homeostatic capacity is overcome liver **injury** occurs – triggered by molecular events and manifested later in tissue

A Computational Liver Model

<u>Goals</u>

- Aid risk assessment
- Predictive tools to extrapolate response between chemicals, doses, times and species

Approach

- Encode knowledge at multiple scales of liver function
- Simulate doseresponse of environment chemicals

The Virtual Liver

Virtual Liver: Multiscale Model of Liver Organization

Multiscale Model

Molecular Networks: Signaling, Generegulation and Metabolism

Cellular Networks: Hepatocytes, **Kupffer Cells**

Assays

Integration

Interactions

Multiscale Tissue Model

Emergent Response

Integrate with Physiological Modeling: PK and BBDR

Virtual Liver Infrastructure: Database, Software Tools & Hardware

Organization of tissue and vasculature

Spatial organization of cells

Cell states, Cell-cell interactions

Molecules, interactions

Liver Database

Reference Database

ACToR

Query Interfaces

Model Standards

Grid Generators

Simulation Engines Graph, 2D, 3D Visualization tools

SBML, CellML, OWL

Un/structured mesh generators

SBW, Agent Simulation, O/PDE solvers

Literature & Repositories

Biological Databases

Required Tools

Community Resources

Parallel Computing

NCCT

Linux cluster

NCC

Supercomputer

Initiative on Nuclear Receptor Mediated Chronic Liver Injury

Collaboration with NHEERL

Incremental Modeling Approach

Virtual Liver Project: Multi-disciplinary Collaborative Initiatives

- Related efforts
 - Physiome.org physiological modeling (Australia)
 - Hepatosys.org hepatocyte modeling (EU)
 - Cardiac modeling

- The Virtual Liver Project
 - -Tools to aid risk assessment
 - -A new paradigm for predicting dose-response
 - -Requires a multi-disciplinary team effort
- Many Challenges
 - -Complexity of biological function
 - -Knowledge representation and database development
 - -Generating biological data to enable modeling
 - -Multiscale dynamic simulation
- Collaboration key to success!